Explain Python Code (official example)
Prefilling the response with an open bracket can help. Add “Do not output preamble or explanations.” and it follows it pretty well.
Prefilling the response with an open bracket can help. Add “Do not output preamble or explanations.” and it follows it pretty well.
openapi: 3.0.1
info:
title: TODO Action
description: An action that allows the user to create and manage a TODO list using a GPT.
version: ‘v1’
servers:
– url: https://example.com
paths:
/to
paths:
/todo:
get:
operationId: getTODOs
description: Fetches items in a TODO list from the API.
security: []
post:
operationId: updateTODOs
description: Mutate
[
“https://example.com/f/dca89f18-16d4-4a65-8ea2-ededced01646”,
“https://example.com/f/01fad6b0-635b-4803-a583-0f678b2e6153”
]
/createWidget:
post:
operationId: createWidget
summary: Creates a widget based on an image.
description: Uploads a file reference using its file id. This file should be an image
Analyze [product] and generate 10 unique ideas on how to encourage customers to refer others. The ideas should focus on adding value to existing customers as a reward for their referrals.
product = [
import tiktoken
def num_tokens_from_string(string: str, encoding_name: str) -> int:
“””Returns the number of tokens in a text string.”””
encoding = tiktoken.get_encoding(encoding_name)
nu
from openai import OpenAI
client = OpenAI()
def get_embedding(text, model=”text-embedding-3-small”):
text = text.replace(“\n”, ” “)
return client.embeddings.create(input = [text], model=model).
export OPENAI_API_KEY=’your-api-key-here’
import numpy as np
from openai.embeddings_utils import distances_from_embeddings
df=pd.read_csv(‘processed/embeddings.csv’, index_col=0)
df[’embeddings’] = df[’embeddings’].apply(eval).apply(np.array