PyTorch Neural Network

Beginner Explanation

Technical Explanation

Academic Context

Code Examples

Example 1:

We implement transformers using PyTorch:

Example 2:

import torch
            from torch import nn

Example 3:

class Transformer(nn.Module):
                def __init__(self, hidden_dim):
                    super().__init__()
                    self.linear = nn.Linear(hidden_dim, hidden_dim)

Example 4:

This approach achieves SOTA results.

Example 5:

            import torch
            from torch import nn

            class Transformer(nn.Module):
                def __init__(self, hidden_dim):

Example 6:

            from torch import nn

            class Transformer(nn.Module):
                def __init__(self, hidden_dim):
                    super().__init__()

Example 7:

            class Transformer(nn.Module):
                def __init__(self, hidden_dim):
                    super().__init__()
                    self.linear = nn.Linear(hidden_dim, hidden_dim)

Example 8:

                def __init__(self, hidden_dim):
                    super().__init__()
                    self.linear = nn.Linear(hidden_dim, hidden_dim)

            This approach achieves SOTA results.

View Source: https://arxiv.org/abs/test.2024.67890